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The Bose gas in an arbitrary curved space-time is considered. A method of 
construction of the thermodynamic potential of a quantum gas by means of a 
finite-temperature Green's function is proposed. On this basis the Bose and 
Boltzmann distributions are derived. The behavior of the chemical potential is 
investigated. The phenomenon of Bose-Einstein condensation is discussed. 

1. INTRODUCTION 

Different variants of the construction of nonstationary relativistic 
thermodynamics have been proposed (Israel and Kandrup, 1984; Bampi 
and Morro, 1980; Pavon et  al., 1982). The necessity of such a theory is 
connected with problems concerning the processes inside stars and the 
thermodynamics of early stages of the universe. Generalization of the 
standard thermodynamic and statistical equations for curved space-time 
and calculation of the possible dissipation processes were presented in the 
above works. According to the authors their methods can be applied to 
systems of classical particles. At the same time success in the construction 
of realistic cosmological models is generally connected with the calculation 
of quantum effects (Guth, 1981; Linde, 1984; Starobinsky, 1982). In this 
connection it is only natural to study some aspects of quantum statistics in 
curved space-time. In this article we show a method that enables us to 
construct statistics and to study some peculiarities of the thermodynamic 
behavior of a quantum Bose gas in external curved space-time. The method 
of finite-temperature quantum field theory can be used as a basic tool for 
this goal. 

The close connection between quantum field theory and statistical 
mechanics has long been known. Thus in the works of Fradkin (1965), 
Fivel (1971), and Symanzik (1966) it was shown that the Euclidean 
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Green's functions are similar to the distribution functions in statistical 
mechanics. The discovered analogies between statistical physics and quan- 
tum field theory at finite temperature were further strengthened after the 
thermodynamic equations for infinite equilibrium systems of free scalar and 
spinor fields were studied by Dolan and Jackiw (1974). These analogies 
provide an opportunity to construct statistical mechanics and thermo- 
dynamics for a material system in space-time with nontrivial topology and 
non-Euclidean geometry, since the field theory can be generalized for these 
cases. Such an approach was used by some authors for studying the finite- 
temperature effective potential in a space-time of constant curvature with 
boundaries (Denardo and Spallucci, 1983; Kennedy, 1981) and for a scalar 
field in a spherically symmetric model when the curvature depends on time 
only (Hu, 1982, 1983; Kennedy et  al., 1980). 

At the same time the problem of the construction of the thermo- 
dynamics of infinite systems in an arbitrary curved space-time has not been 
solved properly so far. Probably the reasons for that are connected with the 
difficulties of defining temperature in such a way as is done in non- 
relativistic equilibrium thermodynamics and the impossibility of defining 
the energy spectrum and vacuum state, as the energy levels depend on the 
geometry and topology of the space-time manifold. Therefore it is necessary 
to find another way for solving these problems. We believe that success can 
be achieved by using the Green's function method in the setting of thermo- 
dynamic laws. The knowledge of the Green's functions allows one to find 
the thermodynamical potential, occupation numbers, chemical potential, 
and other quantities quite easily. Besides, the equations for the Green's 
functions in curved space-time are well known (Birrell and Davies, 1982). 
The main task is to calculate the temperature dependence of the Green's 
functions of any material system in an external curved space-time. 

Our assumption does not require getting thermodynamic laws arid 
equations in the whole space-time manifold. It is better to divide the whole 
space-time volume occupied by the system into quasiequilibrium sub- 
systems. One can consider conditions inside each subsystems to be in 
equilibrium, but one should take into account the fact that this state might 
be limited because of the external influence of the rest of the system. In this 
picture all the thermodynamic potential of the subsystem will depend on 
the point of space-time, but nevertheless it gives us an opportunity to study 
the change of the thermodynamic characteristics of an infinite system 
within the sphere of an observer. 

The chief goal of this paper is to develop the quantum statistics and 
thermodynamics of a Bose gas in an arbitrary curved space-time in the 
adiabatic approximation by means of the finite-temperature Green's 
functions technique. 
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Our work is organized in the following way. In Section 2 we review a 
real scalar field in a curved space-time and give the basis of the construc- 
tion of the local statistics and thermodynamics in term of Green's 
functions. 

In Section 3 we describe the momentum space representation of the 
Feynman propagator of the scalar field. 

Sections 4 and 5 are devoted to calculations of the finite-temperature 
Green's function, the thermodynamic potentials, occupation numbers for 
bosons, and the chemical potential. 

The phenomenon of Bose-Einstein condensation in external curved 
space-time is considered in Section 6. 

Section 7 is devoted to divergences in the one-loop effective action at 
finite temperature. 

In the last section we give a short summary of our work. 

2. BASIC FORMALISM 

Let us consider a real scalar field ~o with the Lagrangian 

= _ l ( p (  _ V ~ V  ~ + m 2 + ~R) (p (1) 

where V, denotes the covariant derivative, R is the scalar curvature of the 
space-time, { is an arbitrary real number, and rn is the mass. We use units 
with h = c = 1 and metric signature ( - ,  + ,  +,  + ). 

In the case of the noninteracting scalar field (1) the one-loop effective 
action is defined in the following way: 

i i 
W= ~ In Det K =  - ~ tr In G (2) 

where KG = 1, the operator K is given by 

K:r x, = ( - V u V  ~ + m 2 + ~R) 6(x - x ')  (3) 

and the Green's function G(x, x') obeys the equation 

( - V ~ V  ~ + m 2 + ~R) a(x,  x') = g 1/2(x)  r - X') (4) 

One can solve equation (4) by the method proposed by Schwinger (1951) 
and DeWitt (1975) and write the solution as 

i 
G(x, x ' )=  (-~)2 A a/2( x, x') 

;o ( x ( t ~ e x p  - im2s  - .F(x, x , i s )  (5) 
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where A(x, x') is the van Vleck determinant defined by the expression 

A(x, x')  = - - g - r e ( x )  det[-~?,~?~,a(x, x')] g - m ( x ' )  (6) 

and the biscalar a(x, x') is half the square of the geodesic distance between 
x and x'. 

The function F(x, x'; is) has the following adiabatic expression: 

where 

F(x, x'; is) = fo(x, x') +fa(x ,  x')  is +f2(x ,  x')(is) 2 + "'" (7) 

fo(x,  x')  = 1 

f l ( X ,  X ' )  ( 1  _ ~ )  1 1 = R + ~(~-  ~) R;~ y~ 

_ 5a~1 �9 ( X _ _ X t ) o ~ ( X _ _ X t ) f l  

f2(X, x ' )=  2,6 5a)~ _ ~ ( ! _  ~ ) 2  R 2 _ 1 

and 

a ~  = �89 ( ~ - I ) R;~  +1-J-d R ;~ - 1 [N R~z 

1 D 1 DkJ.  D 1_ DR,uk 1)  + 

are the Minakshisundaram coefficients. 
We can write also that G(x, x')  is given by 

f /  '" is) G(x, x')  = i ds (~(x, x ,  

where 

(8) 

(9) 

in Det K =  -Jo ids ( i s ) - I  tr N(x, x'; is) (12) 

" 0 ) = 6 ( x - x ' ) .  One can show that with the boundary conditions (q(x, x ,  
the functional determinant of the operator K is defined as 

0 
'" i s )=KxzN(z ,  '" is) (11) i -~s (q ( x, x ,  x ,  

is the heat kernel for operator K. It is ruled by the equation 

iAJ/2(x,x ')  ( ~ ) 
(~(x, x'; is)-= (4his) 2 exp - i s m 2 - ~ t  s F(x, x'; is) (10) 
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and, therefore, 

W= - ~  i&(is) -1 tr ~f(x, x'; is) (13) 

Inserting (10) into (13) and using (9), we write the effective action in the 
form 

i f W= - 2  d 4 x ~  2 dm2 G(x, x) (14) 

The thermodynamic properties of the Bose gas can be studied after the 
thermodynamic potential is found, 

f~ = - T l n  Z (15) 

where Z is the partition function. On the other hand, it is known that the 
thermodynamic potential is equal to the effective Lagrangian of the scalar 
field at finite temperature, that is, 

•=  -WEft]  (16) 

In the next section we show how to get the densities of quantum Bose gas 
thermodynamic potentials using (15) and (16). 

3. LOCAL MOMENTUM-SPACE REPRESENTATION OF 
GREEN'S FUNCTION 

We need to get the expression for the Green's function at finite tem- 
perature to find the thermodynamic potential of the Bose gas according to 
(14) and (16). The expression (14) contains the Green's function in the 
limit of x ~ x ' .  Therefore one can use the method of momentum-space 
representation for the Green's function (Bunch and Parker, 1979) as the 
most convenient for our thermodynamic constructions. 

The Green's function as the solution of equation (3) can be obtained 
in a local region of Riemann space-time by introducing Riemann normal 
coordinates (Petrov, 1969). Let x and x' be points of Riemann space-time. 
Normal coordinates y with origin at point x determine the position of any 
point x' near point x as 

yU ='C . ~  

where ~" is the unit tangent vector (with the origin at point x) to the 
geodesic which joins points x and x', and z is the arc length along this 
geodesic. 

902~32~7-13 
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One can write the expressions for the metric tensor in the Riemann 
normal coordinates as 

ggtv --~" q#v -- 3"~#~vflY Y -- 6J'-#c~vfl~;7 Y Y Y 

_jr_( 1 2 A - ~6R,=~,;~a + a~R=, ,~R~a)  y=y ,ya  + . . .  (17) 

where ~/,~ is the Minkowski metric, and 

1K, ~,~,,fi 1D ,,=,,/3,,~ g = l - - ~ , ~ y  - - ~ , ~ , ~  v v 

+ (~6R~#R~ ~ l_tak ~ _ 1 _ 90'')~''~6k ~6R~t~;~6)y~y#yyy6+ . . .  (18) 

The coefficients of the expressions (17) and (18) are evaluated at y = 0. For 
the solution of equation (4) written in normal coordinates one can use an 
iterative procedure. The resulting expression for the Green's function may 
be written in the form 

G(x,  y ) =  A1/2(x, y )  k ~ . (x ,  y )  - ~ 2  Go(y)  (19) 
./= o 

where 

d4k ciky [. 

Go(y )  = J (27C) 4 k2 q- m2 (20) 

k y  = k~ y~ = q~ak~ y z 

In the limit of x = x', according to (8) the functions [] are given by 

fo(x) = 1, fx(x) = (6/- -- 3) R 
(21) 

A ( x ) = ~  ~ , 2 - 2  ~ ; ~ ( ~ -  g) _~ - ga~ 

4. F I N I T E - T E M P E R A T U R E  G R E E N ' S  F U N C T I O N .  D E N S I T Y  OF 
T H E R M O D Y N A M I C  P O T E N T I A L  

The expression (19) enables us to introduce the finite temperature in 
the same way as in Euclidean quantum field theory. The normal route to 
introducing finite temperature is the following. Let the coordinate yO of 
Euclidean space-time change in a segment y ~  [0, - i f l ] ,  where f l -~=  T is 
the temperature. Then the finite-temperature Green's function can be found 
by the replacement 

( - - ~ ) 4 f ( k )  fl . . . .  ( - ~ ) 3 f ( m , , ,  k) (22) 
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where 

k~ ~on=2~niT ,  n=O, +1, •  . . . .  

k2= __on2+k 2 

Therefore one can write equation (20) in the form 

G o  = 2 (2~)3 _ ~ + ~ 2  
n ~  --oo 

where ee = (k e + m2)1/2 is the energy of the particle. 
Making the summation 

1 k 1 1 1 
~= -~  -co~ + e 2 - 2e ~- ~(e ~ - l i  (24) 

we obtain in the limit of x--* x' 

Gr ~o(X, x) = G(x, x) + G~(x) (25) 

The finite-temperature Green's function of the scalar field is the sum of the 
Green's function G(x, x) and the finite-temperature part in the form 

( ~)Jfd3k 1 
G,(x)=i  k L(x)  - ~m 2 (2~)3e(e ' ~ - 1 )  (26) 

j = 0  

Using equations (14), (16), and the results of this section, we find that the 
density of the thermodynamic potential may be written as 

f2 n(x)  = �89 dm 2 G~(x) (27) 2 

5. STATISTICS OF BOSE GAS. BOLTZMANN GAS 

The infinite contribution of the zero-temperature Green's function 
G(x, x), (25), to the value of the thermodynamic potential f2(x), (27), can 
be eliminated by means of a renormalization procedure in the full 
Lagrangian which includes a gravitational part and a material part. We 
discuss this problem in Section 7. 

Inserting (26) into (27), we get 

•(x) = --~ f j(x) dm 2 - ff-~m 2 
j = O  2 

E; , ]  x (2~) 3 ~(e p~- 1) (28) 
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Since 

2 8 1 
,8 am 2 ln(1 - e -e~) - e(e~ , _ 1) 

we find that 

1 ~ 8 J 
f~(x) = ~ j_~0 f j(x)  ( - ~ ln(1 - e - ~ )  (29) 

To determine this equation at zero momentum we include the chemical 
potential # and fugacity z=exp(]?#). The chemical potential can be 
introduced as (k~ = e)~ + # (Kapusta, 1979). Then 

f2(x) = ~ ff~m2 (-~)3 l n ( 1 - z e  - ~ )  (301 
j=O 

Introducing the function 

gs/2(z) = 4 dx  x 2 ln(1 - ze -x2) = 15/2 (31) 
l = 1  

one can write the expression for the thermodynamic potential in curved 
space-time as 

F2(x) = f j ( x )  g s n ( x )  - ~ 2-- 5 (32) 
j = 0  

where 2 = (2rc/mT) a/2 is the thermal wavelength of the particle. 
The average number of particles in a certain momentum state is 

obtained as the derivative 

8f~(x) ~ ( 8 ) j 1 (33) 
( n k )  = - C~12 ~.(X)  -- ~ z - l e  ~ -  1 

j = 0  

The dependence of the fugacity z on the curvature of the manifold, the 
temperature, and the particle density is given by the expression 

n = ~ 5  1 - f ~ ( x )  - f 2 ( x )  + ' "  g3/2(Z)+ l _  z 

where 

8 
g3/2(z) = z ~ gsn(z) (35) 
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Therefore the chemical potential, density of particles, and temperature are 
connected with the curvature of space-time. 

Now one can consider the Boltzmann distribution as the high- 
temperature limit of the Bose distribution at small particle density. Let 
23n ,~ 1; then, in the approximation of the second order in curvature we can 
write 

(nk)=z. [l + fl(x,(-- ~g_)+ . ..]e -~k (36) 

So the gravitational field changes the value of the chemical potential as 

p(T,R)~#o(T)--2-~(~-~)R (37) 

The formula (37) determines the dependence of the chemical potential of 
the Boltzmann gas on curvature R. 

6. BOSE-EINSTEIN CONDENSATION 

Another example of the possibilities of the proposed scheme is the 
phenomenon of Bose Einstein condensation. This phenomenon was 
investigated by Altaie (1978) and Singh and Pathria (1984) in the space- 
time of constant positive curvature. But we shall define the dependence 
of the critical temperature on the geometry of the space-time manifold 
according to our method. 

At the critical temperature of Bose-Einstein condensation z = 1. Then 
the formula (34) leads to 

( ~ ) [  3 ] (38, n23~>~ 1--fl(X) 4m2 �9 " 

where ~(3/2) is the Riemann zeta function. 
Unfortunately, (38) is very nonlinear, but in the simple case of the 

approximation of the gravitational field the critical temperature of the 
condensation is 

Tc(R)=Tc 1 + ~ + -  .- (39) 

where 

2 h i  n ]2/3 
= rc (R  = 0 ,  = g l_ J 

The behavior of the chemical potential in curved space-time is shown in 
Fig. 1. 
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0 

R--O 

~.,L')>o 

Fig. 1. The dependence of the chemical potential on the curvature. 

7. D I V E R G E N C E S  IN ONE-LOOP EFFECTIVE ACTION AT FINITE 
T E M P E R A T U R E  

As one can show by calculations, the contribution G(x, x) in the 
expression (25) is divergent (Birrell and Davies, 1982). To have a clear 
picture of the model under consideration we need to eliminate these 
divergent contributions. 

Let the complete Lagrangian be 

2~ = ~cP e + s (40) 

where gravitational Lagrangian is 

1 
5~g= 16nGo (R--2A~176176 (41) 

and ~Cem coincides with (1). 
The finite-temperature one-loop effective action is 

where 

mg_t_W m T~O Wg_~_Wm[O]qLWm[fl ] (42) 

Win[O] = f d4x ~-~ ~e~(x) (43) 

and W.[fl] leads to the thermodynamic potential. 
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One can find the expression for 5%(x)  using the results of Section 2. 
Inserting (5) into (14) and making the integration, we get 

1 ~ f j ( x ) I f  ids(is)J-3e im2s (44) 5eeff(x) = 2(4n) 2 j=o 

Let us use the procedure of dimensional regularization to select divergent 
terms. The expression (44) can be rewritten in n-dimensional space-time in 
the following way: 

~(x) = ~ (4~)-"/2 

where M is an arbitrary mass scale. 

fax) m4-2Jr j -  (45) 
j = 0  

The first three terms are divergent because the F function has poles at 
n--* 4. Therefore the divergent contributions in ~f f (x)  are 

m 2 

t 
~ 4m 2 2 ] 

• [_n(n- 2) n - 2 m2fl(x) +f2(x)  (46) 

Combining (46) together with (41), we can redetermine the constants of 
the gravitation Lagrangian density as 

1 
- - A R m  
87rGR 

1 1 1 m 2 
- 8nG-----o A0 (4n) 2 n - 4 2 

16-~o ~ (4~)~_--~ m - ~  

1 a 1 (~  )~ 
a n = ~ o  (4n) 2 n - 4 2  -- ~ 

1 1 1 /~. = 9o + 180 (4n) 2 n - 4 

1 1 1 
7R=7o 180 (4n) 2 n - 4  

16nG n 

where Go, Ao, ~o,/~o, and ~o are bare constants and GR, An, eR, fiR, and 
7n are the physical (finite) constants. 

Since all divergences of 5eai v can be included into Leg, only the finite- 
temperature contributions observed in Section 3 remain. 



1272 Kulikov and Pronin 

8. C O N C L U S I O N  

The method developed in this paper bears a relation to the problems 
of quantum statistics and local thermodynamics of an ideal Bose gas in 
curved space-time and is based on the finite-temperature Green's function 
method. Unlike the ideas suggested by Dowker (1978) and Semenoff a n d  
Weiss (1985), we believe that it is enough to know the Green's functions 
only in the local sphere of the manifold. This can be done by using the 
local momentum-space representation of the Green's function in external 
curved space-time. In our model the chemical potential and occupation 
numbers depend on the curvature of the manifold in which the system is 
considered. The critical temperature of Bose-Einstein condensation is a 
function of curvature, too. A similar conclusion was reached in the works 
of Altaie (1978) and Singh and Pathria (1984) in simpler cases. As all 
thermodynamic values are functions of a point of space-time, this means 
that our system is in a nonequilibrium state. Since the point is chosen in 
an arbitrary way, we believe that the proposed method gives the possibility 
to describe the quantum statistics and thermodynamics of nonstationary 
processes because the result of measurements depends on the position of an 
observer only. Such a point of view was first expressed by Gyarmati  (1970), 
who indicated that the best way to investigate nonstationary processes is to 
divide the whole volume into spheres of equilibrium. In our opinion this is 
achieved in a natural manner by introducing the normal coordinates in 
finite-temperature field theory in external curved space-time. 

The method under consideration can be applied to the investigation of 
the thermodynamic quantities of a quantum Fermi gas and a photon gas 
(Pronin and Kulikov, 1987). 
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